El diagnóstico de las enfermedades genéticas comienza con un estudio del cuadro clínico del paciente, que incluye sus antecedentes familiares.
Algunas enfermedades genéticas pueden ser detectadas en etapas tempranas, lo que incrementa las posibilidades de su prevención o tratamiento. En la actualidad, es posible el diagnóstico prenatal de ciertas enfermedades por medio de diferentes métodos.
Algunos de ellos, como la ecografía, la identificación de ciertas sustancias (por lo general proteínas) en el suero materno y la ecografía de alta resolución son no invasivos.
Otros métodos son invasivos e incluyen la amniocentesis y la biopsia de vellosidades coriónicas que permite llevar a cabo el diagnóstico prenatal citogenético.
Sin embargo, en la mayoría de los casos, el tratamiento de las enfermedades detectadas por pruebas prenatales todavía no es posible, y los padres se enfrentan con la difícil decisión de abortar o no el feto afectado.
En la amniocentesis, primero se determina la posición del feto con ultrasonido, con la ecografía permanentemente proyectada en una pantalla de televisión. Entonces se efectúa la punción y se extrae de la cavidad amniótica líquido con células fetales. Las células se cultivan y se estudian para encontrar alteraciones cromosómicas y otros desórdenes genéticos. La prueba no se realiza hasta la semana 16 de gestación para asegurar que habrá células fetales suficientes y para que la cantidad de líquido extraído -aunque es poca- no perjudique al feto.
En la ecografía del útero de una mujer gestante con un feto de cuatro meses. Las manchas negras dentro de la pared muscular del útero son el líquido amniótico que envuelve al feto. El feto yace sobre su espalda, con la cabeza situada a la izquierda y parece que se chupa el pulgar.
En la biopsia de vellosidades coriónicas, primero se toman las muestras con una jeringa que se introduce a través de la pared abdominal. El proceso se monitorea por medio de una ecografía, de la misma forma que en la amniocentesis. Desde el punto de vista de la genética humana, una de las principales recompensas de la tecnología del DNA recombinante ha sido la capacidad de diagnosticar muchas de las enfermedades hereditarias mencionadas. Existen marcadores que se conocen como RFLPs (se pronuncia "rif-lips" y se traduce como "polimorfismos de longitud de los fragmentos de restricción"). Los RFLPs son el resultado de variaciones naturales -mutaciones que eliminan o alteran la secuencia de reconocimiento para una enzima de restricción §. Cuando esta mutación está asociada con un alelo que causa una enfermedad genética, puede suministrar un marcador diagnóstico para ese alelo.
Al tratar el DNA humano con la enzima de restricción HpaI se producen tres fragmentos de restricción posibles que contienen el gen para la cadena beta de la hemoglobina. En personas con el alelo normal (gris) para esta proteína, los fragmentos tienen 7.000 o 7.600 nucleótidos de largo. En los individuos que llevan el alelo para la anemia falciforme, falta una secuencia de reconocimiento para la enzima de restricción HpaI (presente en el DNA de las personas con el alelo de la cadena beta de la hemoglobina normal). Como consecuencia, el fragmento generado es mayor (13.000 nucleótidos). El ligamiento entre el alelo para anemia falciforme y la pérdida del sitio para HpaI vale sólo para las poblaciones de África Occidental o que fueron originarias de esta zona. En cambio, entre los individuos de África Oriental o provenientes de ella, el alelo de la anemia falciforme está asociado con el fragmento de 7.600 nucleótidos. Las sondas radiactivas constituyen otra herramienta para llevar a cabo la localización y aislamiento de ácidos nucleicos. Estas sondas son fragmentos cortos de DNA o de RNA de cadena simple, marcados con un isótopo radiactivo que se unen al alelo normal o mutante y pueden ser usadas para la detección y el diagnóstico. En este caso, para sintetizar cada sonda es necesario conocer la secuencia del alelo.
A lo largo de los últimos siglos la medicina ha experimentado cambios revolucionarios. Los nuevos conocimientos y prácticas surgidos de la introducción de la microscopia, la anestesia, la vacunación, los antibióticos y los trasplantes son testimonio de estas transformaciones. La medicina se prepara ahora para un giro sustancial: la utilización terapéutica del DNA, denominada terapia génica. La administración del DNA como medicamento puede, al menos teóricamente, corregir enfermedades genéticas, enlentecer la progresión de tumores, enfrentar infecciones virales y detener enfermedades neurodegenerativas. Es decir, puede dirigirse tanto a enfermedades hereditarias como a afecciones adquiridas.
La mayor parte de los ensayos de terapia génica propuestos sólo intentan suplementar con el gen útil un tipo seleccionado de células, para compensar la falta o el defecto en ese gen o aportar una nueva característica. Muchas terapias contra el cáncer intentan inducir a las células cancerosas a producir sustancias que las eliminen directamente, despierten una fuerte respuesta inmune contra ellas o anulen el aporte sanguíneo que los tumores necesitan para crecer. Los problemas técnicos que enfrenta la aplicación de la terapia génica son importantes e impiden que los resultados sean los deseados. Uno de los problemas es la baja eficiencia de los métodos de administración del DNA a las células blanco. Los genes se proveen básicamente de dos maneras; en ambos casos, los genes son primero puestos en "transportadores" o vectores por ejemplo, virus capaces de depositar el gen dentro de las células. En el método más común, los científicos remueven células de un tejido seleccionado del paciente, las exponen al vector que porta el gen en el laboratorio (ex vivo) y luego retornan las células corregidas genéticamente al individuo. El otro método consiste en introducir el vector portador del gen corrector directamente en el cuerpo (in vivo), por lo general en el tejido por tratar. En el cuerpo, ciertos genes son útiles sólo si su expresión es regulada de tal manera que se sintetice la cantidad apropiada de proteína en el momento adecuado. Para muchas aplicaciones de la terapia génica, esa regulación tan precisa no es necesaria. Por ejemplo, para corregir trastornos de la coagulación, como la hemofilia, todo lo que se necesita es lograr un nivel adecuado de la proteína que interviene en este proceso. Esta proteína puede ser provista tanto por las células hepáticas como por otras células (células musculares, fibroblastos o células de la sangre).
El desarrollo de estas estrategias ha suscitado muchas controversias, no sólo entre los científicos, sino también en diferentes sectores de la sociedad. Muchas opiniones advierten sobre los posibles riesgos de introducir DNA foráneo en el genoma de un individuo, ya que sabemos que los genes no están aislados, sino que interactúan entre sí. En la medida en que se avance tanto en la investigación clínica como en la investigación básica, probablemente se irán despejando algunas de esas dudas.
Una de las estrategias de la terapia génica consiste en extraer células de un paciente, cultivarlas y modificarlas in vitro -generalmente utilizando un vector viral-.Luego se reimplantan esas células en el paciente. En este caso, el riesgo de rechazo del implante por parte del sistema inmunitario es mínimo. Esta estrategia se denomina ex vivo y es la más practicada hasta el momento.
Una segunda estrategia de terapia génica consiste en administrar el gen "corrector" al paciente in vivo. Con esta estrategia, sin embargo, no es posible controlar la eficacia de la transferencia del gen.
No hay comentarios:
Publicar un comentario